

Physics I

Set no. 1

Calculations and basic mathematics

- 1. Please write the following numbers to the three significant digits:
 - a) 12 443
 - b) 134
 - c) 120 013
 - d) $6.432 \cdot 10^{12}$
 - e) 0.003343
 - f) 1.4922
 - g) 2.40149
 - h) 0.00420042
 - i) $2.100242 \cdot 10^{-7}$
- Please express in

 radians:

 30 deg, 12 deg, 150 deg, 450 deg

- degrees: $\pi/3 \text{ rad}$; $4\pi/5 \text{ rad}$; 1.57 rad; 0.23 rad

3. Please calculate - if necessary round to the three significant digits (consider giving the result in exponential notation):

- a) $(5.0 \cdot 10^{4}) \cdot (3.0 \cdot 10^{6})$ b) $(5.0 \cdot 10^{4}) \cdot (3.0 \cdot 10^{-6})$ c) $5.0 \cdot 10^{5} + 3.0 \cdot 10^{6}$ d) $(7.0 \cdot 10^{6})/(2.0 \cdot 10^{-6})$ e) $\frac{\sqrt[3]{2.53 \cdot 10^{5} - 1.1 \cdot 10^{3}} + \sqrt{\frac{1225}{2^{8}} \cdot 10^{2}}}{sin(30^{\circ}) \cdot ln(2^{5} \cdot 5)}$ f) $\frac{cos(\frac{\sqrt{12.56}}{15}) + sin(\frac{\pi}{5})}{arcsin(0.5) - 0.97^{3}}$
- 4. Please find the number of significant figures in the following numbers:
 - a) 0.003352
 - b) 0.043034245
 - c) 2.032
 - d) 12.43
 - e) 12.430
 - f) 12.4300
 - g) 0.0043200300

5. Please solve the formulas to determine the given quantity (letter):

a)
$$ma = F - mgf \cos \alpha \Rightarrow m = ?$$

b) $\frac{GMm}{r^2} = \frac{m(\frac{2\pi r}{T})^2}{r} \Rightarrow r = ?$
c) $v = \sqrt{v_0^2 + 2gh} \Rightarrow h = ?$

6. Please find *a* and *t* as a function of v_0 and *s* if:

$$\begin{cases} s = v_0 t + \frac{1}{2}at^2 \\ v = v_0 + at \end{cases}$$

7. Please solve the equations (x - a real number):

a)
$$2x^2 - 5x + 3 = 0$$

b) $(x - 4)^2 = 16$
c) $\sqrt{2(x - 5)} = x - 17$
d) $x^3 - 5x^2 - 2x + 10 = 0$
e) $2x - 1 = \frac{x - 1}{0.5x - \frac{4}{7}}$
f) $2A\cos(0.5x) = A, x \in [0.90^\circ]$

8. Please find *x* if:

- c), d), e) parallelograms
 - 9. Let us assume: a, b real numbers; $a * b = \begin{cases} /a b /, & \text{if } a > 0, b > 0 \\ 2a b, & \text{if } ab < 0 \\ 15, & \text{if } a = b, a < 0 \\ a^2 b, & \text{in the rest} \end{cases}$

Please determine:

a) 2*3
b) (-3)*5
c) 0*(-1)
d) x*x, x < 0
e) x*x, x - any real number

Units, SI units

(E)

E

(E)

(E)

- 10. Please fill the gaps (consider exponential notation):
 - a) $6.23 \text{ mm} = \dots \text{ m} = \dots \text{ km}$
 - b) 2.32 ms = s
 - c) $0.0324 \ \mu g = \dots kg$
 - d) $18 \text{ km/h} = \dots \text{m/s}$
- 11. Please find the result in SI units and name the physical quantity that could be the result:

a)
$$\frac{6\frac{km}{h} \cdot 15\min + 8\frac{m}{s} \cdot \frac{1}{6}h}{2000s} =$$

b)
$$\frac{2 \cdot 0.135km}{(0.015h)^2} =$$

c)
$$\frac{3000g \cdot 10\frac{m}{s^2} + 150mN + \frac{12J}{0.002km}}{1350cm^2 + 0.16m \cdot 350mm} =$$

- 12. Suppose A = BC, where A has the dimension [A] = L/M and C has the dimension [C] = L/T. Please find [B] the dimension of B.
 - 13. Suppose $A = B^2 C^{-1/3}$. Please find [A], if: a) [B] = LM ; [C] = L/T² b) [B] = L/M² ; [C] = L³T⁶ c) [B] = M ; [C] = T²/L³
- 14. Suppose $A = B^n C^m$, where [A] = LT, $[B] = L^2 T^{-1}$, and $[C] = LT^2$. Please find values of *m* and *n*
- 15. Please find a volume and a total surface of (express in m^3 or m^2):
- a) a sphere with a radius of 1.7 cm,
- b) a cylinder with a radius of 2.3 cm and a height of 1.4 m
- c) a cubic box with an edge of 1.2 cm
- 16. During a short interval of time the speed v in m/s of an automobile is given by $v = at^2 + bt^3$, where the time t is in seconds. Please determine the units of a and b

Vectors

17. Four vectors ($\vec{A}, \vec{B}, \vec{C}, \vec{D}$) all have the same magnitude. The angle between adjacent vectors is 45° as shown. Please choose (A – E) and justify the correct vector equation.

- A. $\vec{A} \vec{B} \vec{C} + \vec{D} = 0$ B. $\vec{B} + \vec{D} - \sqrt{2}\vec{C} = 0$ C. $\vec{A} + \vec{B} = \vec{B} + \vec{D}$ D. $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$ E. $(\vec{A} + \vec{C})/\sqrt{2} = -\vec{B}$
- 18. Four vectors (\$\vec{A}\$, \$\vec{B}\$, \$\vec{C}\$, \$\vec{D}\$) all have the same magnitude A. The angle between adjacent vectors is 45° as shown. Please find the coordinates of each of the vectors and then find the coordinates of (express them by A):
 d) \$\vec{A}\$-\$\vec{B}\$-\$\vec{C}\$+\$\vec{D}\$

- 19. A vector of magnitude 20 is added to a vector of magnitude 25. Please give the range in which the magnitude of this sum can be.
- 20. A vector has a component of 10 m in the +x direction, a component of 10 m in the +y direction, and a component of 5 m in the +z direction. Please calculate the magnitude of this vector.
- 21. Two vectors $\vec{a} = 1\hat{i} + 3\hat{j} 2\hat{k}$; $\vec{b} = 2\hat{i} \hat{j} + 4\hat{k}$ are given. Please find:
 - a) length of each vector
 - b) dot product $\vec{a} \cdot \vec{b}$

e) $(\vec{A} + \vec{C})/\sqrt{2} + \vec{B}$

Ε

- c) angle between $\vec{a} \vec{b}$ and $\vec{a} + \vec{b}$
- d) vector product $\vec{a} \times \vec{b}$

22. Let us assume that: $\vec{a} = 3\hat{i} + 3\hat{j} - 2\hat{k}$; $\vec{b} = -\hat{i} - 4\hat{j} + 2\hat{k}$; $\vec{c} = 2\hat{i} + 2\hat{j} + \hat{k}$ Please ckeck if $\vec{a} \perp \vec{b}$ or $\vec{a} \parallel \vec{b}$ or $\vec{b} \perp \vec{c}$ and determine:

a) $\vec{a} \cdot (\vec{b} \times \vec{c})$ c) $\vec{a} \times (\vec{b} + \vec{c})$

b) $\vec{a} \cdot (\vec{b} + \vec{c})$ d) $\vec{a} \times (\vec{b} \times \vec{c})$

23. Please find (in case of vector products express your results by $\hat{i}, \hat{j}, \hat{k}$ and calculate their magnitudes):

- a) $\hat{\imath} \cdot \hat{k}$ c) $\hat{\jmath} \cdot (-\hat{\jmath})$ e) $(-\hat{\imath}) \times (-\hat{\jmath})$ b) $(-\hat{k}) \cdot (-\hat{\jmath})$ d) $\hat{k} \times \hat{\jmath}$ f) $\hat{k} \times (-\hat{\jmath})$
- 24. There are two vectors \vec{a} and \vec{b} attached to the same point. The angle α between the vectors is acute. Please find this angle if increasing α by $\Delta \alpha = 20$ deg will result in:
 - a) the vector product having the same magnitude,
 - b) the dot product will be the opposite.
- 25. Suppose that: $\vec{a} = -3\hat{\imath} + m\hat{\jmath} n\hat{k}$; $\vec{b} = -2\hat{\imath} 4(n-m)\hat{\jmath} + 2(n+1)\hat{k}$, m, n real numbers. Please find n and *m* if:
 - a) $\vec{a} \parallel \vec{b}$,

Е

(E)

- b) $\vec{a} \perp \vec{b}$ and n = 2m.
- 26. The magnetic force \vec{F}_L acting on charge q (so-called *Lorentz force*) moving in the magnetic field \vec{B} (sometimes called *magnetic induction* \vec{B} or *magnetic vector* \vec{B}) with velocity \vec{v} can be described as:

$$\vec{F}_L = q \cdot (\vec{v} \times \vec{B})$$

Please:

- a) discuss the relation between the direction of \vec{v} and \vec{F}_L and between the direction of \vec{B} and \vec{F}_L ;
- b) determine $\vec{F_L}$ if $q = -2e = -3.2 \cdot 10^{-19} \text{ C}$; $\vec{v} = [2,1,0] \cdot 10^5 \text{ m/s}$; $\vec{B} = [0.2; 1; 0.3] \text{ T}$ and calculate the magnitude of $\vec{F_L}$
- c) find the angle between \vec{v} and \vec{B} (values of q, $\vec{B} \vec{v}$ in part b)).