Physics I

Set no. 2

- Consider the motion depicted in the diagram below. A man walks 4 meters East, 2 meters South, 4 meters West, and finally 2 meters North. Please find:
- a) the distance (path length, trajectory length) that man has walked,

- b) the displacement, $\Delta \vec{r}$, of that man.
- 2. A plane traveling north at 200m/s (the first stage of the flight) turns and then travels south at 200m/s (the second stage of the flight). Let us assume that *x*-axis is directed on the east and the *y*-axis on the north. Please:
 - a) find the velocity vector \vec{v}_1 in the first stage
 - b) find the velocity vector \vec{v}_2 in the second stage
 - c) determine the change in velocity vector $\Delta \vec{v}$ and calculate its magnitude.
- 3. A car travels 30 km North and then runs East for 0.5 h at the velocity of 80 km/h. Please find average speed and average velocity during this route.
- 4. The x-coordinate (1D motion) of a particle in meters is given by $x(t) = 16t 3t^3$, where the time t is in seconds. Please find the time t_r for which the particle is momentarily at rest at.
 - 5. The x-coordinate of a particle in meters is given by $x(t) = 16t 3t^3$, where the time t is in seconds. Please find:
 - E) a) the displacement Δx between $t_1 = 2$ s and $t_2 = 4$ s,
 - b) the average velocity for that time range (see above),
 - c) the path length (distance) for $t \in [2,4]s$
 - d) the average speed of this object for $t \in [2,4]s$
 - e) the distance for $t \in [0,3]s$
- 6. A drag racing car starts from rest at t = 0 and moves along a straight line with velocity given by $v = bt^2$, where b is a positive constant. Please find the expression for the distance travelled by this car from its position at t = 0.

- 7. A ball rolls up a slope. At the end of three seconds its velocity is 20 cm/s; at the end of eight seconds its velocity is 0. Please determine the magnitude of the average acceleration from the third to the eighth second. What is the direction of \vec{a}_{AV} in relation to \vec{v} ?
- 8. The coordinate of an object is given as a function of time by $x(t) = 7t 3t^2$, where x is in meters and t is in seconds. Please calculate:
 - a) the average velocity over the interval from t = 0 to t = 4 s,
 - b) the magnitude of the average velocity in that time range,
 - c) the distance and the average speed from t = 0 to t = 4 s.
 - 9. The movement of the rocket is described as follows:

$$\vec{r} = [2,5,6] + [2,2,1]t + [2,4,0]t^2$$

where time t and all coefficients are in SI units. Please:

- a) find the formula for x(t); y(t) and z(t),
- b) calculate $v_x(t)$; $v_y(t)$; $v_z(t)$, where v_x , v_y , v_z are velocity vector components (coordinates),
- c) determine $a_x(t)$; $a_y(t)$; $a_z(t)$, where a_x , a_y , a_z are acceleration components (coordinates),
- d) write \vec{V} and \vec{a} using their components and the unit vectors \hat{i} , \hat{j} , \hat{k} .
- 10. The position of the body is given by (A, B, ω positive constants):

a)
$$\vec{r} = [At, Bt^2]$$

b)
$$x(t) = A\sin(\omega t)$$
$$y(t) = Bt$$

c) $\vec{r} = A\cos\omega t \hat{\imath} + A\sin\omega t \hat{\jmath}$

Please:

(E)

- a) determine the value (magnitude) of the acceleration and the velocity vector at time t= 0,
- b) find the trajectory (path equation) in form of y(x).
- 11. The position vector of the body is given by $\vec{r} = A\cos \omega t \hat{i} + B\sin \omega t \hat{j}$. Please discuss the trajectory of the body if $(A, B \ge 0, \omega > 0)$:

- a) A = B = 0
- b) $A = B \neq 0$

(E)

- c) $A \neq B$ and $A \neq 0$ and $B \neq 0$
- 12. The position vector of the body is given by $\vec{r} = A\cos \omega t \hat{i} + B\sin(\omega t + \phi)\hat{j}$ where A, B, ω positive constants. Please discuss the trajectory of the body if:

a) $\phi = 90^{\circ}$ b) $\phi = 180^{\circ}$ c) $\phi = -90^{\circ}$ d) $\phi = 270^{\circ}$ e) $\phi = -180^{\circ}$

13. The position vector of the body is given by:

a)
$$\vec{r} = A\cos(2\omega t)\hat{\imath} + B\sin(\omega t)\hat{\jmath}$$
.

b)
$$\vec{r} = A\cos(2\omega t)\hat{\iota} + B\cos(\omega t)\hat{\jmath}$$

Please determine the trajectory equation of the body.