Physics 2

Set no. 3

- 1. Let $\mathbf{F} = [F_x, F_y, F_z]$. Please determine (if it makes sense):
 - a) $\nabla(\nabla \vec{F})$
 - b) $\nabla \times (\nabla \times \vec{F})$
 - c) $\nabla \times (\nabla \vec{F})$
 - d) $\Delta \vec{F} = \nabla^2 \vec{F} = (\nabla \circ \nabla) \vec{F}$
- 2. Please determine (if possible) gradient, divergence and rotation for $[f \text{scalar field function}, \mathbf{v} \text{vector field function}]$:
 - a) $f(x,y,z) = 2xy + x^2yz + z$
 - b) $f(x,y,z) = \sin(x+y) + xy\cos(z)$
 - c) v = [x,y]
 - d) v = [x,-y]
 - e) $\mathbf{v} = [\mathbf{y}, \mathbf{x}]$
 - f) $\mathbf{v} = [12xy, 16x^2yz, x-y]$
- 3. Let us assume that $f(x,y,z) = 2xy + x^2yz + z$ is a potential function for some vector field **v**. Please find **v**.
- 4. Assume that **F** is a harmonic force field (3D case with radial symmetry), $F = -k\mathbf{r}$, k > 0. Please check if $V(r) = 0.5kr^2$ could be a potential of this field.
- 5. Please determine rotation of $\mathbf{E} = [8x^{-2}; 6\cos^2(y-z)]$